Sparse bounds for oscillatory and random singular integrals
نویسندگان
چکیده
Let TP f(x) = ∫ e K(y)f(x − y) dy, where K(y) is a smooth Calderón–Zygmund kernel on R, and P be a polynomial. We show that there is a sparse bound for the bilinear form 〈TP f, g〉. This in turn easily implies Ap inequalities. The method of proof is applied in a random discrete setting, yielding the first weighted inequalities for operators defined on sparse sets of integers.
منابع مشابه
TWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND
In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...
متن کاملOn Multilinear Oscillatory Integrals, Nonsingular and Singular
Basic questions concerning nonsingular multilinear operators with oscillatory factors are posed and partially answered. L norm inequalities are established for multilinear integral operators of Calderón-Zygmund type which incorporate oscillatory factors e iP , where P is a real-valued polynomial. A related problem concerning upper bounds for measures of sublevel sets is solved.
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملBounds for Multilinear Sublevel Sets
The question in the form (1.2) was posed by Li, Tao, Thiele, and this author in [5]. Nonoscillatory inequalities of the form ∫ ∏ j |fj◦`j | . ∏ j ‖fj‖Lpj have been studied in [1],[2]. Oscillatory integral inequalities of this type have been extensively studied for n = 2, where one is dealing with bilinear forms 〈Tλ(f1), f2〉. The associated linear operators Tλ are commonly known as oscillatory i...
متن کامل